Multivariate reduced rank regression in non-Gaussian contexts, using copulas

نویسندگان

  • Andréas Heinen
  • Erick Rengifo
چکیده

We propose a new procedure to perform Reduced Rank Regression (RRR) in nonGaussian contexts, based on Multivariate Dispersion Models. Reduced-Rank Multivariate Dispersion Models (RR-MDM) generalise RRR to a very large class of distributions, which include continuous distributions like the normal, Gamma, Inverse Gaussian, and discrete distributions like the Poisson and the binomial. A multivariate distribution is created with the help of the Gaussian copula and estimation is performed using maximum likelihood. We show how this method can be amended to deal with the case of discrete data. We perform Monte Carlo simulations and show that our estimator is more efficient than the traditional Gaussian RRR. In the framework of MDM’s we introduce a procedure analogous to canonical correlations, which takes into account the distribution of the data. ∗The authors would like to thank Luc Bauwens and Léopold Simar for helpful discussions and suggestions. The usual disclaimers apply.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatial Interpolation Using Copula for non-Gaussian Modeling of Rainfall Data

‎One of the most useful tools for handling multivariate distributions of dependent variables in terms of their marginal distribution is a copula function‎. ‎The copula families capture a fair amount of attention due to their applicability and flexibility in describing the non-Gaussian spatial dependent data‎. ‎The particular properties of the spatial copula are rarely ...

متن کامل

Identication robust inference in multivariate reduced rank regression and factor models

We propose identi…cation robust inference methods for multivariate reduced rank (MRR) regressions. Such models involve nonlinear restrictions on the coe¢ cients of a multivariate linear regression (MLR), whose identi…cation may raise serious non-regularities leading to the failure of standard asymptotics. To circumvent such problems, we propose con…dence set estimates for parameters of interest...

متن کامل

Pair-copula constructions of multivariate copulas

The famous Sklar’s theorem (see [54]) allows to build multivariate distributions using a copula and marginal distributions. For the basic theory on copulas see the first chapter ([14]) or the books on copulas by Joe ([32]) and Nelson ([51]). Much emphasis has been put on the bivariate case and in [32] and [51] many examples of bivariate copula families are given. However the class of multivaria...

متن کامل

Information bounds for Gaussian copulas.

Often of primary interest in the analysis of multivariate data are the copula parameters describing the dependence among the variables, rather than the univariate marginal distributions. Since the ranks of a multivariate dataset are invariant to changes in the univariate marginal distributions, rank-based estimators are natural candidates for semiparametric copula estimation. Asymptotic informa...

متن کامل

Quantitative trait linkage analysis using Gaussian copulas.

Mapping and identifying variants that influence quantitative traits is an important problem for genetic studies. Traditional QTL mapping relies on a variance-components (VC) approach with the key assumption that the trait values in a family follow a multivariate normal distribution. Violation of this assumption can lead to inflated type I error, reduced power, and biased parameter estimates. To...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 52  شماره 

صفحات  -

تاریخ انتشار 2008